Hilbert's Nullstellensatz

Recall the relationships we know so far between ideals and algebraic sets.

We have a map V: {ideals in
$$k(x_1, \dots, x_n] \xrightarrow{2} \xrightarrow{2}$$
 {alg. sets in $A_k^n \xrightarrow{2}$

- map is inclusion-reversing: $I \subseteq J \Rightarrow V(J) \subseteq V(I)$.
- surjective (by def)
- If X is algebraic, V(I(X)) = X, so I is a right inverse.
- $V(x^2) = V(x)$, so it's not injective.
- However, $V(I) = V(\sqrt{I})$.

If we restrict our attention to radical ideals, is V a bijection?

Note that this is not true over e.g. \mathbb{R}^{2} $x^{2}+y^{2}$ is irreducible, thus $(x^{2}+y^{2})$ and (x,y) are both prime and thus radical over \mathbb{R} . However, the zero set of each is (0,0).

The Nullstellensatz says that if k is algebraically closed, we do get a bijection:

Hilbert's Nullstellensatz: Let k be algebraically closed and

 $I \subseteq k[x_1, ..., x_n]$ an ideal. Then $I(V(I)) = \sqrt{I}$.

(Thus I is a left inverse when V is restricted to radical ideals)

In order to prove this, we first need the following.

Weak Nullstellensatz: If k is algebraically closed and $I \subsetneq k[x_1, ..., x_n]$ a proper idual, then $V(I) \neq \emptyset$.

Pf: Find a maximal ideal $m \supset I$. Then $V(m) \subseteq V(I)$.

Claim: Any maximal ideal
$$m \in k(x_1, ..., x_n)$$
 is of the form $(x_1 - a_1, ..., x_n - a_n)$, $a_i \in k$.
(we'll prove this next time.)

So
$$V(m) = \{(a_1, \dots, a_m)\}$$
. In particular, $V(I) \neq \emptyset$. \Box

Proof of Nullstellensatz: We know VI SI (V(I)).

Let
$$I = (f_{1}, \dots, f_{r})$$
. Suppose $g \in I(V(I))$.

Let $R = k[x_1, ..., x_n]$ and $S = k[x_1, ..., x_{n+1}]$. Define $J = (f_1, ..., f_r, x_{n+1}g - 1) \subseteq S$.

What is $V(J) \subseteq \mathbb{A}^{n+1}$? If $P \in V(J)$ then $f_i(P) = 0 \forall i$, so g(P) = 0. Thus, $\chi_{n+1}g - 1$ evaluated at P is not O. $\Longrightarrow V(J) = \phi$.

The weak Nullstellensatz implies that J=S, so IEJ.

=>
$$\sum a_i f_i + b(x_{n+1}g - 1) = 1$$
 for some $a_{1,...,a_r,b} \in S$.

Let N be the highest power of x_{n+1} appearing in The equation, and set $y = \frac{1}{\pi_{n+1}}$

Multiplying both sides of the equation by y^N and cancelling all the x_{n+1} 's yields

$$\sum \tilde{a}_i f_i + \tilde{b} (g - y) = y^N$$
, where $\tilde{a}_i, \dots, \tilde{a}_r, \tilde{b} \in k[x_1, \dots, x_n, y]$.

Substituting g for y, we get $g^N = F + O$ where $F \in I$, do you see why we're allowed to do this?

So $g \in \sqrt{I}$. \Box

Cor: We now have the beginnings of a dictionary between commutative algebra and algebraic geometry. Let $S = k[x_1, ..., x_n]$.

Algebraic	commutative algebra
Algebraic sets in $A^{n} $	radical ideals in s

Points in
$$A^{\mu}$$
 \longleftrightarrow maximal ideals
(a,..., a) $(h \in S)$
 A^{μ} \longleftrightarrow (i) = S
 A^{μ} \longleftrightarrow (o)
Inclusion
of algebraic \Leftrightarrow (reverse) in clusion
of algebraic \Leftrightarrow (reverse) in clusion
of algebraic \Leftrightarrow (reverse) in clusion
of algebraic \Leftrightarrow (o)
irreducible \Leftrightarrow irreducible polynomials
hypersurfaces $(hp \text{ to scaling})$
algebraic mosets \Leftrightarrow Radical ideals $(\Leftrightarrow \text{ radical ideals} = 1)$
algebraic mosets \Leftrightarrow Radical ideals $(\Leftrightarrow \text{ radical ideals} = 1)$
 $fex:$ Consider $I = (\pi(y-1), \pi z^2) \in C[\pi, y, z]$
 $= (\pi)(y-1, z^2) \Rightarrow \sqrt{T} = (\pi)(y-1, z)$

 $\vee(I) = \vee(x) \cup \vee(y-1, z).$

Irreducible algebraic subsets of
$$V(I)$$

= {irr. subsets of $V(r)$ } U {irr. subsets of $V(y-1, z)$ }

 $\mathbb{C}[x,y,z]_{(x)} \cong \mathbb{C}[y,z]$ so the algebraic subsets correspond to those in the plane.

 $\mathbb{C}[x,y,z]/(y-1,z) \cong \mathbb{C}[x]$, so the proper alg. subsets are just points and \emptyset .

V(I) is finite $\iff S_{I}$ is a finite dimensional k-vector space.

Ex: 1.) k[x] has k-basis $l, \pi, \pi^2, ...$ and $V(0) = A^l$, which is infinite.

2.) In
$$k[x_1y](x^2-y)$$
, $\overline{y} = \overline{x}^2$, so it has k-basis $1, \overline{x}, \overline{x}^2, \dots$, and $V(x^2-y)$ is infinite.

3.)
$$k[x,y](x^2,y)$$
 has k-basis l, \overline{x} , so dimension 2, and $V(x^2,y) = \xi(0,0)$, finite.

4.)
$$k[x,y]/(y,x(x-1))$$
 also has k-basis 1, \overline{x} , and dim 2, but
 $V(y,x(x-1)) = \{(0,0),(1,0)\}$

5.) If
$$f \in k[x]$$
 is a polynomial of deg $d > 0$, then in $\binom{k[x]}{(f)}$,
 \overline{x}^{n} is a k-linear combination of lower degree terms, so
 $\overline{1}, \overline{x}, \dots, \overline{x}^{n-1}$ forms a basis.

Note: This dimension $\dim_{k}(\frac{S}{T})$ is called the "length" of the corresponding "scheme". Even though $V(x^{2}, y) = V(x, y)$, the two ideals define different schemes.

• Versus •

We'll come back to this in a few weeks.

Pf of corollary: First assume
$$\dim_{k}(S/T) < \infty$$
. Let $P_{1}, ..., P_{r} \in V(T)$.
Claim: We can find $f_{1}, ..., f_{r} \in S$ if $f_{1} (P_{j}) = \begin{cases} 1 & \text{if } i \neq j \\ 0 & \text{strumse} \end{cases}$
Statistical
pf of find $f_{1}, ..., f_{r} \in S$ if $f_{1} (P_{j}) = \begin{cases} 1 & \text{if } i \neq j \\ 0 & \text{strumse} \end{cases}$
Statistical
pf of find $f_{1}, ..., f_{r} \in S$ if $f_{1} (P_{j}) = 0$ had $g_{1}(P_{j}) \neq 0$
for $j \neq i$ (i.e. a hyperplane avoiding P_{j}).
Set $f_{j} = \frac{1}{\alpha} g_{1} g_{2} \cdots \widehat{g}_{d} \cdots g_{r}$
with $\alpha = product of g_{1} eval at P_{j} . D
We want to show that the
 $\overline{f_{1}}$'s are linearly independent in S_{T} .
Let $\lambda_{1}, ..., \lambda_{r} \in k$ set $\Sigma \lambda_{1}, \overline{f_{1}} = 0$. Then $\Sigma \lambda_{1}, f_{1} \in T$.
Since $P_{j} \in V(T)$, $D = \Sigma \lambda_{1} f_{1}(P_{j}) = \lambda_{j}$, so $\lambda_{1} = 0$ for all i.
Thus, $\overline{f_{1}}, ..., \overline{f_{r}}$ are linearly independent so $V \leq \dim_{k} (S_{T}) < \infty \Rightarrow V(T)$
prove assume $V(T) = \{P_{1}, ..., P_{n}\}$, i.e. $V(T)$ is finite.
For each $j \in \{1, ..., h\}$, define $f_{j} = (x_{j} - a_{1j})(x_{j} - a_{2j}) \dots (x_{j} - a_{rj})$
where $a_{1j} = j^{1n}$ coordinate of P_{1} .$

Then
$$f_{i}(P_{i}) = 0$$
 $\forall i, j, so$ $f_{i} \in I(V(I)) = \sqrt{I}$.

Thus, $\exists N \gg 0$ c.t. $f_j^N \in I \forall j$. $\implies \overline{f}_j^N = 0$, so \overline{x}_j^{Nr} is a k-linear combination of smaller powers

 \Rightarrow we can generate $\frac{S'_{I}}{I}$ as a vector space by finitely many monomials. $\Rightarrow \dim_{k} \left(\frac{S'_{I}}{I}\right) < \infty$. \Box

Effective Nullstellensatz let $I = (f_1, ..., f_r) \subseteq k[x_1, ..., x_n]$.

$$|f g(P) = 0 \quad \text{for all } P \in V(I), \text{ then since } \sqrt{I} = I(V(I)),$$
$$g^{N} \in I \quad \text{for some } N > 0.$$

Question: Is there an upper bound on the minimum N that works?

Thm: (kollár, 1988) If f_i are homogeneous of deg $d_i \ge 2$, then $g \in \sqrt{I} \iff g^N \in T$ for some $N \le \prod_{i=1}^r d_i$.

If r<n, ho smaller N will work in general.